176 research outputs found

    Discovery of TUG-770: a highly potent free fatty acid receptor 1 (FFA1/GPR40) agonist for treatment of type 2 diabetes

    Get PDF
    Free fatty acid receptor 1 (FFA1 or GPR40) enhances glucose-stimulated insulin secretion from pancreatic β-cells and currently attracts high interest as a new target for the treatment of type 2 diabetes. We here report the discovery of a highly potent FFA1 agonist with favorable physicochemical and pharmacokinetic properties. The compound efficiently normalizes glucose tolerance in diet-induced obese mice, an effect that is fully sustained after 29 days of chronic dosing

    Associations of the plasma lipidome with mortality in the acute respiratory distress syndrome: a longitudinal cohort study

    Full text link
    Abstract Background It is unknown if the plasma lipidome is a useful tool for improving our understanding of the acute respiratory distress syndrome (ARDS). Therefore, we measured the plasma lipidome of individuals with ARDS at two time-points to determine if changes in the plasma lipidome distinguished survivors from non-survivors. We hypothesized that both the absolute concentration and change in concentration over time of plasma lipids are associated with 28-day mortality in this population. Methods Samples for this longitudinal observational cohort study were collected at multiple tertiary-care academic medical centers as part of a previous multicenter clinical trial. A mass spectrometry shot-gun lipidomic assay was used to quantify the lipidome in plasma samples from 30 individuals. Samples from two different days were analyzed for each subject. After removing lipids with a coefficient of variation > 30%, differences between cohorts were identified using repeated measures analysis of variance. The false discovery rate was used to adjust for multiple comparisons. Relationships between significant compounds were explored using hierarchical clustering of the Pearson correlation coefficients and the magnitude of these relationships was described using receiver operating characteristic curves. Results The mass spectrometry assay reliably measured 359 lipids. After adjusting for multiple comparisons, 90 compounds differed between survivors and non-survivors. Survivors had higher levels for each of these lipids except for five membrane lipids. Glycerolipids, particularly those containing polyunsaturated fatty acid side-chains, represented many of the lipids with higher concentrations in survivors. The change in lipid concentration over time did not differ between survivors and non-survivors. Conclusions The concentration of multiple plasma lipids is associated with mortality in this group of critically ill patients with ARDS. Absolute lipid levels provided more information than the change in concentration over time. These findings support future research aimed at integrating lipidomics into critical care medicine.https://deepblue.lib.umich.edu/bitstream/2027.42/143134/1/12931_2018_Article_758.pd

    Associations of the plasma lipidome with mortality in the acute respiratory distress syndrome: a longitudinal cohort study

    Full text link
    Abstract Background It is unknown if the plasma lipidome is a useful tool for improving our understanding of the acute respiratory distress syndrome (ARDS). Therefore, we measured the plasma lipidome of individuals with ARDS at two time-points to determine if changes in the plasma lipidome distinguished survivors from non-survivors. We hypothesized that both the absolute concentration and change in concentration over time of plasma lipids are associated with 28-day mortality in this population. Methods Samples for this longitudinal observational cohort study were collected at multiple tertiary-care academic medical centers as part of a previous multicenter clinical trial. A mass spectrometry shot-gun lipidomic assay was used to quantify the lipidome in plasma samples from 30 individuals. Samples from two different days were analyzed for each subject. After removing lipids with a coefficient of variation > 30%, differences between cohorts were identified using repeated measures analysis of variance. The false discovery rate was used to adjust for multiple comparisons. Relationships between significant compounds were explored using hierarchical clustering of the Pearson correlation coefficients and the magnitude of these relationships was described using receiver operating characteristic curves. Results The mass spectrometry assay reliably measured 359 lipids. After adjusting for multiple comparisons, 90 compounds differed between survivors and non-survivors. Survivors had higher levels for each of these lipids except for five membrane lipids. Glycerolipids, particularly those containing polyunsaturated fatty acid side-chains, represented many of the lipids with higher concentrations in survivors. The change in lipid concentration over time did not differ between survivors and non-survivors. Conclusions The concentration of multiple plasma lipids is associated with mortality in this group of critically ill patients with ARDS. Absolute lipid levels provided more information than the change in concentration over time. These findings support future research aimed at integrating lipidomics into critical care medicine.https://deepblue.lib.umich.edu/bitstream/2027.42/143134/1/12931_2018_Article_758.pd

    A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry

    Get PDF
    We present here a review of the fundamental topics of Hartree-Fock theory in Quantum Chemistry. From the molecular Hamiltonian, using and discussing the Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock equations for the electronic problem. Special emphasis is placed in the most relevant mathematical aspects of the theoretical derivation of the final equations, as well as in the results regarding the existence and uniqueness of their solutions. All Hartree-Fock versions with different spin restrictions are systematically extracted from the general case, thus providing a unifying framework. Then, the discretization of the one-electron orbitals space is reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition of the basic underlying concepts related to the construction and selection of Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we close the review with a section in which the most relevant modern developments (specially those related to the design of linear-scaling methods) are commented and linked to the issues discussed. The whole work is intentionally introductory and rather self-contained, so that it may be useful for non experts that aim to use quantum chemical methods in interdisciplinary applications. Moreover, much material that is found scattered in the literature has been put together here to facilitate comprehension and to serve as a handy reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and subeqn package

    Atomic motion in magneto-optical double-well potentials: A new testing ground for quantum chaos

    Get PDF
    We have identified ultra-cold atoms in magneto-optical double-well potentials as a very clean setting in which to study the quantum and classical dynamics of a nonlinear system with multiple degrees of freedom. In this system, entanglement at the quantum level and chaos at the classical level arise from nonseparable couplings between the atomic spin and its center of mass motion. The main features of the chaotic dynamics are analyzed using action-angle variables and Poincare surfaces of section. We show that for the initial state prepared in current experiments [D. J. Haycock et al., Phys. Rev. Lett. 85, 3365 (2000)], the classical and quantum dynamics diverge, and the observed experimental dynamics are best described by quantum mechanics. Furthermore, the motion corresponds to tunneling through a dynamical potential barrier. The coupling between the spin and the motional subsystems, which are very different in nature from one another, leads to new questions regarding the transition from regular quantum dynamics to chaotic classical motion.Comment: 36 pages including 6 pages of figures. To be published in PRE Nov. 1st, 2001. Revised version contains a discussion and extra figure (Fig 5) related to gauge potentials, plus added refernce

    Fats and Factors: Lipid Profiles Associate with Personality Factors and Suicidal History in Bipolar Subjects

    Get PDF
    Polyunsaturated fatty acids (PUFA) have shown efficacy in the treatment of bipolar disorder, however their specific role in treating the illness is unclear. Serum PUFA and dietary intakes of PUFA associate with suicidal behavior in epidemiological studies. The objective of this study was to assess serum n-3 and n-6 PUFA levels in bipolar subjects and determine possible associations with suicidal risk, including suicidal history and relevant personality factors that have been associated with suicidality. We studied 27 bipolar subjects using the NEO-PI to assess the big five personality factors, structured interviews to verify diagnosis and assess suicidal history, and lipomics to quantify n-3 and n-6 PUFA in serum. We found positive associations between personality factors and ratios of n-3 PUFA, suggesting that conversion of short chain to long chain n-3s and the activity of enzymes in this pathway may associate with measures of personality. Thus, ratios of docosahexaenoic acid (DHA) to alpha linolenic acid (ALA) and the activity of fatty acid desaturase 2 (FADS2) involved in the conversion of ALA to DHA were positively associated with openness factor scores. Ratios of eicosapentaenoic acid (EPA) to ALA and ratios of EPA to DHA were positively associated with agreeableness factor scores. Finally, serum concentrations of the n-6, arachidonic acid (AA), were significantly lower in subjects with a history of suicide attempt compared to non-attempters. The data suggest that specific lipid profiles, which are controlled by an interaction between diet and genetics, correlate with suicidal history and personality factors related to suicidal risk. This study provides preliminary data for future studies to determine whether manipulation of PUFA profiles (through diet or supplementation) can affect personality measures and disease outcome in bipolar subjects and supports the need for further investigations into individualized specific modulations of lipid profiles to add adjunctive value to treatment paradigms

    GLUT1 gene is a potential hypoxic marker in colorectal cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumor hypoxia is an important factor related to tumor resistance to radiotherapy and chemotherapy. This study investigated molecules synthesized in colorectal cancer cells during hypoxia to explore the possibility of developing molecular probes capable of detecting cell death and/or the efficiency of radiotherapy and chemotherapy.</p> <p>Methods</p> <p>At first, we incubated two human colorectal adenocarcinoma cell lines SW480 (UICC stage II) and SW620 (UICC stage III) cells in hypoxic (≤2% O<sub>2</sub>, 93% N<sub>2</sub>, and 5% CO<sub>2</sub>) and normoxic conditions (20% O<sub>2</sub>, 75% N<sub>2</sub>, and 5% CO<sub>2</sub>) for 24 h and 48 h. The relative expression ratio of GLUT1 mRNA in hypoxic conditions was analyzed by RT-PCR. Ten cancerous tissues collected from human colorectal cancer patients were examined. HIF-1α and HIF-2α levels were measured to indicate the degree of hypoxia, and gene expression under hypoxic conditions was determined. As a comparison, HIF-1α, HIF-2α, and GLUT1 levels were measured in the peripheral blood of 100 CRC patients.</p> <p>Results</p> <p>Hypoxia-induced lactate was found to be elevated 3.24- to 3.36-fold in SW480 cells, and 3.06- to 3.17-fold in SW620 cells. The increased relative expression ratio of GLUT1 mRNA, under hypoxic conditions was higher in SW620 cells (1.39- to 1.72-fold elevation) than in SW480 cells (1.24- to 1.66-fold elevation). HIF-1α and HIF-2α levels were elevated and GLUT1 genes were significantly overexpressed in CRC tissue specimens. The elevated ratio of GLUT1 was higher in stage III and IV CRC tissue specimens than in the stage I and II (2.97–4.73 versus 1.44–2.11). GLUT1 mRNA was also increased in the peripheral blood of stage II and III CRC patients as compared to stage I patients, suggesting that GLUT1 may serve as a hypoxic indicator in CRC patients.</p> <p>Conclusion</p> <p>In conclusion, this study demonstrated that GLUT1 has the potential to be employed as a molecular marker to indicate the degree of hypoxia experienced by tumors circulating in the blood of cancer patients.</p

    Skeletal muscle gene expression in response to resistance exercise: sex specific regulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The molecular mechanisms underlying the sex differences in human muscle morphology and function remain to be elucidated. The sex differences in the skeletal muscle transcriptome in both the resting state and following anabolic stimuli, such as resistance exercise (RE), might provide insight to the contributors of sexual dimorphism of muscle phenotypes. We used microarrays to profile the transcriptome of the biceps brachii of young men and women who underwent an acute unilateral RE session following 12 weeks of progressive training. Bilateral muscle biopsies were obtained either at an early (4 h post-exercise) or late recovery (24 h post-exercise) time point. Muscle transcription profiles were compared in the resting state between men (n = 6) and women (n = 8), and in response to acute RE in trained exercised vs. untrained non-exercised control muscle for each sex and time point separately (4 h post-exercise, n = 3 males, n = 4 females; 24 h post-exercise, n = 3 males, n = 4 females). A logistic regression-based method (LRpath), following Bayesian moderated t-statistic (IMBT), was used to test gene functional groups and biological pathways enriched with differentially expressed genes.</p> <p>Results</p> <p>This investigation identified extensive sex differences present in the muscle transcriptome at baseline and following acute RE. In the resting state, female muscle had a greater transcript abundance of genes involved in fatty acid oxidation and gene transcription/translation processes. After strenuous RE at the same relative intensity, the time course of the transcriptional modulation was sex-dependent. Males experienced prolonged changes while females exhibited a rapid restoration. Most of the biological processes involved in the RE-induced transcriptional regulation were observed in both males and females, but sex specificity was suggested for several signaling pathways including activation of notch signaling and TGF-beta signaling in females. Sex differences in skeletal muscle transcriptional regulation might implicate a mechanism behind disproportional muscle growth in males as compared with female counterparts after RE training at the same relative intensity.</p> <p>Conclusions</p> <p>Sex differences exist in skeletal muscle gene transcription both at rest and following acute RE, suggesting that sex is a significant modifier of the transcriptional regulation in skeletal muscle. The findings from the present study provide insight into the molecular mechanisms for sex differences in muscle phenotypes and for muscle transcriptional regulation associated with training adaptations to resistance exercise.</p

    Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States

    Get PDF
    Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks
    corecore